Microhydrodynamic Technologies Laboratory

fedorets.pngHead:  Alexander A. Fedorets, Doctor of Technical Sciences,
Member of the Scientific Council of the International Centre for Heat and Mass Transfer  
SPIN-RSCI: 5576-4606
ORCID: 0000-0001-6595-3927
ResearcherID: H-4401-2014
Scopus AuthorID: 6505879007
Google Scholar: CDerMqkAAAAJ
ResearchGate: Alexander_Fedorets
Contacts: fedorets@utmn.ru, fedorets_alex@mail.ru

Laboratory Staff:
Aktaev N.E., PhD, Physical and Mathematical Sciences, Postdoctoral Student, Research Fellow
ORCID 0000-0002-9750-2183ResearcherID A-4963-2014Scopus AuthorID 35110893400ResearchGate;
Bormashenko E.Yu., PhD, Senior Research Fellow
ORCID 0000-0003-1356-2486, Scopus AuthorID 56240418000, Google Scholar, ResearchGate;
Dombrovsky L.A., PhD, Technical Sciences, Senior Research Fellow,
ORCID 0000-0002-6290-019X, Scopus AuthorID 6603682233, Google Scholar, ResearchGate;
Gabyshev D.N., PhD, Physical and Mathematical Sciences, Junior Research Fellow
Scopus AuthorID 56653536600, Google Scholar, ResearchGate;
Medvedev D.N., Postgraduate Student, Junior Research Fellow
Scopus AuthorID 57008846000, ResearchGate;
Nosonovsky M.I., PhD, Senior Research Fellow
ORCID 0000-0003-0980-3670, ResearcherID B-2228-2012, Scopus AuthorID 8531950800, Google Scholar, ResearchGate;
Shcherbakov D.M., Junior Research Fellow.

•  University of Wisconsin-Milwaukee, Milwaukee, WI, USA;
•  Ariel University, Ariel, Israel;
•  Joint Institute for High Temperatures, RAS, Moscow, Russia;
•  A.M. Prokhorov General Physics Institute, RAS, Moscow, Russia;
•  S.S. Kutateladze Institute of Thermophysics, RAS, Novosibirsk, Russia;
•  Novosibirsk State University, Novosibirsk, Russia
•  Tomsk Polytechnic University, Tomsk, Russia

Research area
The main object of the laboratory's research is the dissipative structure known as “Droplet cluster”. This new phenomenon was discovered by A.A. Fedorets in 2003. The cluster is a two-dimensional aerosol with a number of unique characteristics. It is a monolayer of spherical microdroplets levitating in a gas medium over a locally-heated surface of water or other liquids.
Strict spatial localization of the cluster provides qualitatively new opportunities for the development of precision methods for studying physical and chemical processes under conditions that are as close as possible to atmospheric conditions. The breakthrough technologies created in the laboratory will make it possible to deepen our understanding of the chemical evolution of atmospheric pollution and related global climate changes phenomena. It will also increase the efficiency of sprayed chemical and biological plant protection products, among other benefits.
Included in the main tasks of the laboratory are the development of new methods for the abiogenic synthesis of complex organic molecules in a microdroplet reactor as well as the study of the ability of microorganisms to live in atmospheric aerosols.

1.jpg    2.jpg
The dissipative structure “Droplet Cluster”: left — top view, right — side view.

Main publications over the past three years:

Fedorets A.A. Droplet cluster: review (2017)

1. Fedorets A.A., Frenkel M., Bormashenko E., Nosonovsky M. Small Levitating Ordered Droplet Clusters: Stability, Symmetry, and Voronoi Entropy // Journal of Physical Chemistry Letters — 2017. — V. 8. — P. 5599–5602. — DOI: 10.1021/acs.jpclett.7b02657
2. Fedorets A.A., Frenkel M., Shulzinger E., Dombrovsky L.A, Bormashenko E., Nosonovsky M. Self-assembled levitating clusters of water droplets: Pattern-formation and stability // Scientific Reports — 2017. — V. 7. — article no. 1888, 6 pp. DOI: 10.1038/s41598-017-02166-5
3. Fedorets A.A., Dombrovsky L.A., Ryumin P.I. Expanding the temperature range for generation of droplet clusters over the locally heated water surface // International Journal of Heat and Mass Transfer — 2017. — V. 113. — P. 1054–1058. DOI: 10.1016/j.ijheatmasstransfer.2017.06.015
4. Mendeleyev V.Ya., Kachalov V.V., Kurilovich A.V., Dombrovsky L.A. Abnormally strong decrease in reflectance of molten copper due to possible generation of levitating sub-micron melt droplets // International Journal of Heat and Mass Transfer — 2017. — V. 113. — P. 53–58. DOI: 10.1016/j.ijheatmasstransfer.2017.05.056
5. Fedorets A.A., Dombrovsky L.A. Generation of levitating droplet clusters above the locally heated water surface: A thermal analysis of modified installation // International Journal of Heat and Mass Transfer – 2017. — V. 104. — P. 1268–1274. DOI: 10.1016/j.ijheatmasstransfer.2016.09.087
6. Barakhovskaia E.V., Marchuk I.V., Fedorets A.A. Thermocapillary deformation in a locally heated layer of silicone oil // Journal of Physics: Conference Series — 2016. — V. 754. — P. 032002. DOI: 10.1088/1742-6596/754/3/032002
7. C1 2580176 RU 7 G01F 13/00. Method of stabilizing size of microdroplets forming dissipative “Droplet Cluster” structure / Fedorets A.A. (Tyumen State University) — no. 2015110381/28; App. 23.03.2015 // Inventions. Useful models. — 2016. — Bul. no. 10. — 3 p. URL: freepatent.ru/images/img_patents/2/2580/2580176/patent-2580176.pdf
8. Cheverda V.V., Fedorets A.A., Marchuk I.V., Kabov O.A. Thermocapillary deformation of a water layer at local heating // Thermophysics and Aeromechanics — 2016. — V. 23, No. 2. — P. 231–236. DOI: 10.1134/S0869864316020098
9. Dombrovsky L.A., Fedorets A.A., Medvedev D.N. The use of infrared irradiation to stabilize levitating clusters of water droplets // Infrared Physics and Technology — 2016. — Vol. 75. — P. 124–132. DOI: 10.1016/j.infrared.2015.12.020
10. Fedorets A.A., Dombrovsky L.A., Medvedev D.N. Effect of infrared irradiation on the suppression of the condensation growth of water droplets in a levitating droplet cluster // JETP Letters — 2015. — V. 102. No. 7. — P. 452–454. DOI: 10.1134/S0021364015190042
11. Fedorets A.A., Marchuk I.V., Strizhak P.A., Kabov O.A. Capillary waves at microdroplet coalescence with a liquid layer // Thermophysics and Aeromechanics — 2015. — V. 22. No. 4. — P. 515–518. DOI: 10.1134/S0869864315040137
12. Fedorets A.A., Dombrovsky L.A., Smirnov A.M. The use of infrared self-emission measurements to retrieve surface temperature of levitating water droplets. // Infrared Physics and Technology — 2015. — V. 69. — P. 238–243. DOI: 10.1016/j.infrared.2015.02.005

Additional links:
• Youtube: Alexander Fedorets
• Wikipedia.org: https://ru.wikipedia.org/wiki/Капельный_кластер (automatic translation with Google)

News about us:
• Khimiya i Zhizn – XXI Vek, no. 7, 2017 (automatic translation)
Russian News Agency TASS, May 30, 2017 (automatic translation)
RIA Novosti, May 26, 2017 (automatic translation)
Tyumenskaya oblast‘ segodnja, April 19, 2017 (automatic translation)
Russian News Agency TASS, November 9, 2016 (automatic translation)
Znak.com, October 19, 2016 (automatic translation)
University of Tyumen, October 19, 2016 (automatic translation)
University of Tyumen, June 29, 2016 (automatic translation)
University of Tyumen, April 15, 2015 (automatic translation)

Current projects: 
• Experimental and theoretical study on the observed microdroplets levitation and the conditions for the formation of stable droplet clusters over the heated surface of a liquid, 2015–2017 (grant of the Russian Foundation for Basic Research No. 15-08-00248\15). Project manager A.A. Fedorets;
• Experimental and theoretical study of microscale processes of heat and mass transfer in the dissipative structure “Droplet Cluster”, 2017–2019 (State task of the Ministry of Education and Science of the Russian Federation No. 3.8191.2017/БЧ). Project manager A.A. Fedorets.

Postgraduate and postdoctoral studies opportunities for 2018/2019
PhD programs:
Specialty: 01.04.14 — Thermal physics and theoretical heating engineering (offered in Russian, automatic translation).

Postdoc Announcements:
Project: Microhydrodynamic Technologies for Controlled 2D Aerosol Generation.

See more at the University of Tyumen Postdoctoral Fellowships.

625003, Russia, Tyumen, ul. Lenina 25, lab. 305, e-mail: fedorets@utmn.ru, fedorets_alex@mail.ru